US009449131B2

United States Patent

(12) 10) Patent No.: US 9,449,131 B2
Han et al. 45) Date of Patent: Sep. 20, 2016
(54) EXTRACTING SYSTEM ARCHITECTURE IN 8,296,713 B2* 10/2012 Ispircccooovivninrine. G06F7}gﬁg§
HIGH LEVEL SYNTHESIS 8,966,457 B2* 2/2015 Ebcioglu GOGF 17/5045
716/105
(71) Applicant: Xilinx, Inc., San Jose, CA (US)
FOREIGN PATENT DOCUMENTS
(72) Inventors: Guoling Han, Fremont, CA (US);
Stephen A. Neuendorffer, San Jose, wO WO 94/10627 Al 5/1994
CA (US) OTHER PUBLICATIONS
(73) Assignee: XILINX, INC., San Jose, CA (US) Datasheet, “Synphony C Compiler,” Synopsys, Inc., Mar. 2014, 3
pages (available at https://www.synopsys.com/Tools/Implementa-
(*) Notice: Subject to any disclaimer, the term of this tion/RTL Synthesis/Pages/SynphonyC-Compiler.aspx).*
patent is extended or adjusted under 35 Moore et al., “A parallel for loop memory template for a high level
U.S.C. 154(b) by 198 days synthesis compiler,” 2010 13” Euromicro Conference on Digital
T ’ System Design: Architectures, Methods and Tools, pp. 449-455.*
. Xilinx, Inc., “Introduction to FPGA Design with Vivado High-Level
(21) Appl. No.: 14/294,062 Synthesis”, User Guide, UG998 (v1.0), Jul. 2, 2013, pp. 1-89,
. http://www.xilinx.com/support/documentation/sw manual s/ug998-
(22) Filed: Jun. 2, 2014 vivado-intor-fpga-design-hls.pdf, San Jose, CA USA.
Xilinx, Inc., “Vivado Design Suite User Guide High-Level Synthe-
(65) Prior Publication Data sis”, User Guide, UG902 (v2014.1) May 30, 2014, 5 pages,
http ://www.xilinx.com/support/documentation/sw manual s/xi | i
US 2015/0347654 Al Dec. 3, 2015 nx2014 1/ug902-vivado-high-level -synthesis.pdf, San Jose, CA
USA.
(51) Int. ClL (Continued)
GO6F 17/50 (2006.01)
GOGF 945 (2006.01) Primary Examiner — Leigh Garbowski
(52) US. ClL (74) Attorney, Agent, or Firm — Kevin T. Cuenot
CPC GO6F 17/5045 (2013.01); GO6F 8/433
(2013.01); GOGF 8/45 (2013.01); GO6F 8/452 (57) ABSTRACT
(2013.01); GO6F 8/456 (2013.01); GO6F . . L .
17/505 (2013.01); GOGF 17/5054 (2013.01); Extracting a system architecture in high lgvel synthesis
includes determining a first function of a high level pro-
GO6F 2217/86 (2013.01) . . .
. . . gramming language description and a second function con-
(58) Field of Classification Search tained within a control flow construct of the high level
None) programming description. The second function is deter-
See application file for complete search history. mined to be a data consuming function of the first function.
. Within a circuit design, a port including a local memory is
(56) References Cited automatically generated. The port couples a first circuit

U.S. PATENT DOCUMENTS

5,603,043 A
6,438,739 Bl *

2/1997 Taylor et al.

8/2002 Yamada GO6F 17/5045

block implementation of the first function to a second circuit
block implementation of the second function within the
circuit design.

716/104 17 Claims, 7 Drawing Sheets
A Memory 310
330 ¥
v
Start Control
305 ™ Circuit L
function A() 320 : v
L: For(x) { !
function B(), | —» 315 p------ » B
v :
function C(); End Control i
Circuit -
325
y
4 4
Memory
© 335

US 9,449,131 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Canis, Andrew, et al., “From Software to Accelerators with LegUp
High-Level Synthesis”, 2013 International Conference on Compil-
ers, Architecture and Synthesis for Embedded Systems (CASES),
Sep. 1, 2013, pp. 1-9.

Chinnadurai, M., et al., “High Level Synthesis Tools-an Overview
from Model to Implementation”, Middle-East Journal of Scientific
Research, Feb. 1, 2014, pp. 241-254.

Meeus, Wim et al., “An overview of today’s high level synthesis
tools”, Design Automation for Embedded Systems, vol. 16, No. 3,
Aug. 21, 2012, pp. 31-51.

Johnson, D., “Programming a Xilinx FPGA in ‘C’,” [online] Xcell
Journal, The Quarterly Journal for Programmable Logic Users,
Issue 34, 4th Qtr, 1999, pp. 26-30, retrieved from the Internet:
http://www.xilinx.com/publications/archives/xcell/Xcell34.pdf.

* cited by examiner

U.S. Patent Sep. 20, 2016 Sheet 1 of 7 US 9,449,131 B2
Display Pointing Network
Ke;glgc())ard Device Device Adapter
135 140 145
Y
-
v 115 y
Memory Elements
Processor 110
105
Local Memory | | Bulk Storage Device
120 125
Electronic Design Automation
(EDA) Application
\ 150)
100
Description Circuit Design

155

\/\

160

FIG. 1

\/\

U.S. Patent Sep. 20, 2016 Sheet 2 of 7 US 9,449,131 B2

200
Receive high level programming Automatically generate port(s)
language description (description) > within circuit design
of electronic system 240
205
y
_ _ r — Automatically generate control
Identify functions of description circuitry within circuit design
210 245
y y
Identify control flow construct within Automatically generate circuit
description blocks for functions of description
215 250
y y
contained within the control flow 255
construct
220

v

Determine which functions are data
generating function(s) and data
consuming function(s)

v

Evaluate data exchange(s)
between data generating and data
consuming functions

v

Determine port type according to
data exchange evaluation between
data generating and data
consuming functions

225

230

235

FIG. 2

U.S. Patent Sep. 20, 2016 Sheet 3 of 7 US 9,449,131 B2

A R Memory 310
g 330 /
Start Control
305~ Circuit |] _
function A() 320 | i
L: For(x) { A |
function B(), | —» i 315 bomomes » B
I v_ v i
function C(); End Control !
Circuit B
325
L
v y
FIG 3-1 Memory
c 335
A / 310
A
v ;
Start Control
Circuit
""l
320 !
A |
i 315| r------ » B
\ A !
End Control i
Circuit B
325
A
! 355
C

FIG. 3-2

U.S. Patent Sep. 20, 2016 Sheet 4 of 7 US 9,449,131 B2

Memory 410
A M 430 e
4
2 7
Start Control y
Circuit -
420 -
305\ . » B1
. | A
function A() ! Yy v
L: For(x) { i
function B(); | ——» i 415 B2
} !
function C(); i ¢ y Y
! A 4
\ 4 h 4
End Control i---» B3
Circuit -
425
L
v Y
Memory
FIG. 4-1 © 435
410
A e
4
v + 450
Start Control
Circuit
420 B1
7}
i v .
: A 4
| a15 B2
i g
' A 4
y \ 4
End Control B3
Circuit
455

FIG. 4-2

U.S. Patent Sep. 20, 2016 Sheet 5 of 7 US 9,449,131 B2

A Memory 510
i 530 ¥
X
vV Vv
Start Control
Circuit
505 s EEEEEEET SERELE
N 520 ' ;
function A() 7y | A E \ 4
If (Condltlon) functlgn B1() i 515| t-» B 5—--» R
else function B2(); 1 ! !
function C(); 3 v | :
End Control i :
Circuit [T
525
L
v y
FIG. 5 Memory
C I 535
610
.| Output A
A | Memory /
function A(int inputA[N], int outputA[N]); y v
function B1(int inputB1[N], int outputB1[N]); y
function B2(int inputB2[N], int outputB2[N]); Start.Co.ntroI
function C(int inputC[N], int outputC[N]); Circuit --» B1 +
620
function A(inputA, outputA); l A s f Output B1
for(int i=0; i<M; ++i) — vy v Memory
{ End Control
function B1(outputA, outputB1); Circuit --» B2 <—|
function B2(outputB1, outputB2), 625
!
function C(outputB2, outputC); 7 §
v y
Output B2
C bl
Memory

FIG. 6

U.S. Patent

Sep. 20, 2016 Sheet 6 of 7

US 9,449,131 B2

!
function C(outputB2, outputC);

function A(stream<int> &inputA, stream<int> &outputA);
function B1(stream<int> &inputB1, stream<int> &outputB1);
function B2(stream<int> &inputB2, stream<int> &outputB2;
function C(stream<int> &inputC, stream<int> &outputC);

function A(inputA, outputA);
for(int i=0; i<M; ++i)

function B1(outputA, outputB1);
function B2(outputB1, outputB2);

FIG. 7

805 ~

void producer (int A[N])

{

for(int i=0; i<N; ++i)
Alil=...

!

void consumer(int A[N], ...)

{

for(int i=0; i<N; ++i)
L=A.

FIG. 8

US 9,449,131 B2

Sheet 7 of 7

Sep. 20, 2016

U.S. Patent

. | U |
6 Old ! !
“ |
ciel & ¢ |
! 6| Si6 | T06 SLOW
L{[1or] 1o | T T T T T T 11 O I O T 11 T 11
\“ N T T 4 T T T A o
0L “ 1T 1T | T06SNVHd
| -
| 06 910
| T N T 11
i 06 S9Q
N 1]
206 s910
906 T S § —
|||||||||||||||||||||| 1 06 sdSd
1 i i 1 | I I I O O = 111 111
_ — R I L I I
_ 76 || o ||EP6 ! EO6SNVE
111 11dSd I4Hg] I I N I I | I I I I | I I | | I I |
| | T I T T e T T T L T T e S8 T T T T T[]
_ﬂ_Lﬂa oL e e ﬂl_%._wm s s 0655500710 / OI14NOD 706:0/1
INT P AN P AN P AN PN I I O O O O O O O N 11T
| 206 sg10
- IrT__JT . 10T __ ||h_ I I I I I R |
- 06SNVg
“ 1 i i T " 016 20¥d 206 910
| ||l o || _ TO6SWVXE
|| [1esa 149 ! N”q@”mm”_._v
I A I IT 05 A s -
LTte | 16 | 776 | 716 | 176 | 706 sg0I
PLINE PLINT P N PN PN P 4
(R U ¥ U ¥ |||u_n_.||hf €06 5910
€06 o ____= T0BSNYHd
C 1T S I v I I I I I I
1 AL o
| 10| 1
4 | 706 SLOW
2 206 | L
| eﬁkz_ ! 80T NOILNAIMLSIA Y2012 / DIANOD

US 9,449,131 B2

1
EXTRACTING SYSTEM ARCHITECTURE IN
HIGH LEVEL SYNTHESIS

FIELD OF THE INVENTION

This disclosure relates to integrated circuits (ICs) and,
more particularly, to extracting a system architecture for a
circuit design during high level synthesis.

BACKGROUND

High-level synthesis is an automated design process that
creates a circuit design from a high level programming
language description of an electronic system. The high level
programming language description of the electronic system
is an algorithmic description. Examples of high level pro-
gramming languages include, but are not limited to, C, C++,
SystemC, and the like. An electronic design automation
(EDA) tool operates on the high level programming lan-
guage description and generates the circuit design. The
circuit design may be a register-transfer level hardware
description of the electronic system specified using a hard-
ware description language (HDL).

During high level synthesis, one objective is to identify
sequential portions of the high level programming language
description where parallelism may be introduced. When
incorporated into the circuit design, parallelism provides
improved resource usage and improved system performance
in the resulting circuitry. Many high level programming
language descriptions are iterative in nature and utilize
complex, programming language constructs such as loops,
arrays, and the like. Extracting a dataflow architecture from
a high level programming language description having such
complex constructs is difficult and not ordinarily performed.

SUMMARY

A method includes determining a first function of a high
level programming language description and a second func-
tion contained within a control flow construct of the high
level programming description, determining that the second
function is a data consuming function of the first function,
and automatically generating, within a circuit design and
using a processor, a port including a local memory. The port
couples a first circuit block implementation of the first
function to a second circuit block implementation of the
second function within the circuit design.

A system includes a processor programmed to initiate
executable operations. The executable operations include
determining a first function of a high level programming
language description and a second function contained within
a control flow construct of the high level programming
description, determining that the second function is a data
consuming function of the first function, and automatically
generating, within a circuit design, a port including a local
memory. The port couples a first circuit block implementa-
tion of the first function to a second circuit block imple-
mentation of the second function within the circuit design.

A non-transitory computer-readable storage medium
includes instructions stored thereon. The instructions, when
executed by a processor, perform a method. The method
includes determining a first function of a high level pro-
gramming language description and a second function con-
tained within a control flow construct of the high level
programming description, determining that the second func-
tion is a data consuming function of the first function, and
automatically generating, within a circuit design, a port

10

15

20

25

30

35

40

45

50

55

60

65

2

including a local memory. The port couples a first circuit
block implementation of the first function to a second circuit
block implementation of the second function within the
circuit design.

Other features will be recognized from consideration of
the Detailed Description and Claims, which follow.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram illustrating an exemplary data
processing system.

FIG. 2 is a flow chart illustrating an exemplary method of
creating a circuit design from a high level programming
language description (description) of an electronic system.

FIGS. 3-1 and 3-2 are block diagrams illustrating the
automatic creation of a circuit design from a description of
an electronic system.

FIGS. 4-1 and 4-2 are block diagrams illustrating the
automatic creation of another circuit design from a descrip-
tion of an electronic system.

FIG. 5 is a block diagram illustrating the automatic
creation of another circuit design from a description of an
electronic system.

FIG. 6 is a block diagram illustrating the automatic
creation of another circuit design from a description of an
electronic system.

FIG. 7 illustrates an exemplary description of an elec-
tronic system that uses self-synchronized ports.

FIG. 8 illustrates another exemplary description of an
electronic system that uses self-synchronized ports.

FIG. 9 is an exemplary architecture for an integrated
circuit.

DETAILED DESCRIPTION OF THE DRAWINGS

While the disclosure concludes with claims defining novel
features, it is believed that the various features described
within this disclosure will be better understood from a
consideration of the description in conjunction with the
drawings. The process(es), machine(s), manufacture(s) and
any variations thereof described herein are provided for
purposes of illustration. Specific structural and functional
details described within this disclosure are not to be inter-
preted as limiting, but merely as a basis for the claims and
as a representative basis for teaching one skilled in the art to
variously employ the features described in virtually any
appropriately detailed structure. Further, the terms and
phrases used within this disclosure are not intended to be
limiting, but rather to provide an understandable description
of the features described.

This disclosure relates to integrated circuits (ICs) and,
more particularly, to extracting a system architecture for a
circuit design during high level synthesis. In accordance
with the inventive arrangements described within this dis-
closure, a high level programming language description of
an electronic system is processed to generate a circuit design
for the electronic system. The high level programming
language description is an algorithmic description that may
include any of a variety of control flow constructs such as
non-nested loops, arrays, conditional control structures, and
the like. The control flow constructs are processed by
incorporating control circuitry that facilitates data-depen-
dent timing behavior. The data dependent timing behavior of
the circuit design is controlled and/or synchronized among
the various circuit blocks that are generated using control
signals that may be generated by the control circuitry.

US 9,449,131 B2

3

The resulting circuit design is a hardware description of
the electronic system. The circuit design may be specified
using a hardware description language. Further, the circuit
design supports multiple, concurrent executions of a large
body of the program code of the original high level pro-
gramming language description of the electronic system.

In one aspect, the inventive arrangements described
herein may be implemented as a method or process per-
formed by a data processing system. In another aspect, the
inventive arrangements may be implemented as a data
processing system having a processor that is programmed to
execute and/or initiate executable operations that generate a
circuit design as described herein. In still another aspect, the
inventive arrangements may be implemented as a non-
transitory computer-readable storage medium storing pro-
gram code that, when executed, causes a processor and/or a
system to perform a method or process.

Several definitions that apply throughout this document
are presented. As defined herein, the term “automatically”
means without user intervention. As defined herein, the term
“user” means a human being.

As defined herein, the term “high level programming
language” means a set of instructions used to describe a data
processing system, e.g., an electronic system, where the
instructions typically have a strong abstraction from the
details of the described system. A high level programming
language may hide aspects of operation of the described
system such as memory management or machine instruc-
tions and may enable a program, written in the high level
programming language, to be transformed into a variety of
systems. When using a high level programming language,
the user may, but need not, explicitly describe the registers,
memory addresses, machine instructions, etc. of the system
to be generated from the program. Examples of high level
programming languages include, but are not limited to, C,
C++, SystemC, or the like. In some cases, the instruction set
of a particular data processing system may be considered a
“high level programming language” when transformed into
a program expressed in the instruction set of an alternate, or
different, data processing system.

As defined herein, the term “control flow construct”
means one or more statements or instructions of a high level
programming language whose execution results in a choice
being made as to which of two or more different dataflow
paths are followed. A control flow construct is not the same
as a function. An example of a control flow construct is a
conditional branch. A conditional branch refers to the case
where statements are executed only when a condition is met
or are executed until a condition is met. Conditional
branches include loop constructs, for-next constructs, do-
until constructs, if-then constructs, if-then-else constructs,
and the like.

As defined herein, the term “hardware description lan-
guage” is a computer-language that facilitates the documen-
tation, design, and implementation of a digital system. The
implementation of the digital system may include the trans-
formation of the digital system into a set of masks for IC
manufacturing, the programming of a programmable IC
such as a field programmable gate array (FPGA), or the like.
Using an HDL, for example, a user can design and specify
an electronic circuit, describe the operation of the circuit,
and create tests to verify operation of the circuit. An HDL
includes standard, text-based expressions of the spatial and
temporal structure and behavior of the digital system being
modeled. HDL syntax and semantics include explicit nota-
tions for expressing concurrent operations in a digital system
and synchronizing the progress of concurrent operations to

10

15

20

25

30

35

40

45

50

55

60

65

4

achieve a particular combined behavior. In many circuits,
this synchronization is based on a globally visible signal
called a “clock.” It should be appreciated, however, that
other mechanisms for synchronization between portions of a
circuit may be provided.

As defined herein, the term “handshaking” or “handshake
signaling” means a type of control signaling that may
include the establishment of synchronization or providing of
notifications between sending and receiving equipment, e.g.,
circuits, by means of exchanging specific character configu-
rations and/or signals. Handshaking may be implemented
using a set of signals in relation to a clock signal, or may be
implemented using a set of signals independent of a clock
signal (e.g. “two-phase handshake”), or may be imple-
mented using the exchange of data packets or messages
through a protocol combining a set of more primitive
synchronizations and communications.

For purposes of simplicity and clarity of illustration,
elements shown in the figures have not necessarily been
drawn to scale. For example, the dimensions of some of the
elements may be exaggerated relative to other elements for
clarity. Further, where considered appropriate, reference
numbers are repeated among the figures to indicate corre-
sponding, analogous, or like features.

FIG. 1 is a block diagram illustrating an exemplary data
processing system (system) 100. System 100 includes at
least one processor, e.g., a central processing unit (CPU),
105 coupled to memory elements 110 through a system bus
115 or other suitable circuitry. System 100 stores program
code within memory elements 110. Processor 105 executes
the program code accessed from memory elements 110 via
system bus 115. In one aspect, system 100 is implemented
as a computer that is suitable for storing and/or executing
program code. It should be appreciated, however, that sys-
tem 100 may be implemented in the form of any system
including a processor and memory that is capable of per-
forming the functions described within this specification.

Memory elements 110 include one or more physical
memory devices such as, for example, local memory 120
and one or more bulk storage devices 125. Local memory
120 refers to random access memory (RAM) or other
non-persistent memory device(s) generally used during
actual execution of the program code. Bulk storage device(s)
125 can be implemented as a hard disk drive (HDD), a solid
state drive (SSD), or other persistent data storage device.
System 100 also may include one or more cache memories
(not shown) that provide temporary storage of at least some
program code in order to reduce the number of times
program code must be retrieved from bulk storage device
125 during execution.

Input/output (1/0) devices such as a keyboard 130, a
display device 135, and a pointing device 140 optionally
may be coupled to system 100. The /O devices may be
coupled to system 100 either directly or through intervening
1/O controllers. A network adapter 145 also may be coupled
to system 100 to enable system 100 to become coupled to
other systems, computer systems, remote printers, and/or
remote storage devices through intervening private or public
networks. Modems, cable modems, Ethernet cards, and
wireless transceivers are examples of different types of
network adapter 145 that may be used with system 100.

As pictured in FIG. 1, memory elements 110 store an
electronic design automation (EDA) application 150. EDA
application 150, being implemented in the form of execut-
able program code, is executed by system 100. As such,
EDA application 150 is considered an integral part of system
100. EDA application 150 operates upon a received high

US 9,449,131 B2

5

level programming language description 155 of an elec-
tronic system under development. For purposes of clarity
and discussion, high level programming language descrip-
tion 155 is referred to as “description” 155 or a “description”
of an electronic system. Description 155, being specified
using a high level programming language, is an algorithmic
description of the electronic system. Description 155 does
not specity particular hardware to be used.

EDA application 150 operates upon algorithmic descrip-
tion 155 and generates a circuit design 160 for the electronic
system. Circuit design 160 is a hardware description of the
electronic system specified by description 155. Circuit
design 160 may be specified as a register transfer level
hardware description written or specified in an HDL.

EDA application 150 and any data items, including
description 155 and/or circuit design 160, are functional data
structures that impart functionality when employed as part
of system 100 or when further processed for implementation
within an IC, whether a programmable IC, an application-
specific IC, a partially programmable IC, or an IC that is not
programmable.

FIG. 2 is a flow chart illustrating an exemplary method
200 of creating a circuit design from a description of an
electronic system. Method 200 may be performed by a
system such as system 100 of FIG. 1. For purposes of
illustration, method 200 is described as processing one
control flow construct. It should be appreciated, however,
that method 200 may be performed iteratively to process
further control flow constructs that may be identified within
the description or otherwise adapted to process multiple
control flow constructs identified within the description.

In block 205, the system receives a description of an
electronic system for processing. The description is speci-
fied in a high level programming language. Further, the
description includes a control flow construct. In block 210,
the system identifies functions specified within the descrip-
tion.

Inblock 215, the system identifies a control flow construct
within the description. In block 220, the system determines
which function, or functions as the case may be, are con-
tained within the control flow construct. Within this speci-
fication, a function contained within the control flow con-
struct is referred to as a “target function.” A function is
contained within the control flow construct when execution
of the control flow construct determines whether the target
function is or is not executed and/or a number of times
(iterations) the target function is executed.

In block 225, the system determines which of the func-
tions of the description, including any target functions, are
data generating functions and which are data consuming
functions. As defined herein, the term “data generating
function” means a function of the description that generates
or outputs data that is used as input by another function,
which may or may not be the target function. As defined
herein, the term “data consuming function” means a func-
tion of the description that receives, as input, data generated
or output by another function, which may or may not be the
target function. The system identifies data generating func-
tion and data consuming function relationships. A given
function may operate as a data generating function with
respect to one function and a data consuming function with
respect to another, different function.

In block 230, the system evaluates data exchange(s)
between data generating and data consuming functions of
the description. For example, the system evaluates data
exchanges between the target function and a data generating
function providing input to the target function. The system

10

15

20

25

30

35

40

45

50

55

60

65

6

further may evaluate data exchanges between the target
function and a data consuming function that receives output
from the target function.

Since each function is transformed into a circuit block, the
resulting circuit blocks are coupled by ports. As defined
herein, a “port” refers to circuitry or a hardware description
of circuitry, e.g., wires, memory, interfaces, etc., that couple
two or more circuit blocks thereby enabling the circuit
blocks to exchange signals and/or data. The type of the port
used to couple a circuit block created for a data generating
function with a circuit block created for the data consuming
circuit block is determined from the evaluation of the data
exchange occurring between the data generating function
and the data consuming function.

The system may determine one or more attributes of the
data exchange. In one aspect, the system may detect a
compiler directive included in the description of the elec-
tronic system that indicates a type of data exchange per-
formed between a function and the target function. For
example, within the description, a “pragma” or “# pragma”
directive may be found that is associated with a particular
function thereby specifying a type of data exchange. A
directive, when detected in association with a target func-
tion, for example, may indicate a type of port that is to be
used when creating the circuit design. Attributes of the data
exchange(s) also may include a type of the data that is
exchanged as defined within the high level programming
language of the description.

In another aspect, the system may analyze inputs to the
function, outputs from the function, and/or determine a
sequential order in which input data items are processed
and/or output data items are generated. The system may
determine whether data generated by a data generating
function, for example, is consumed by a data consuming
function in the same sequential order as generated by the
data generating function. Similarly, the system may deter-
mine whether data generated by a data generating function
is consumed by a data consuming function in a different
sequential order than generated by the data generating
function.

In block 235, the system determines a port type according
to the evaluation of the data exchange(s) between data
generating and data consuming functions. In one or more
aspects, the system may determine the port type according
to detected a compiler directive(s) or a data type that is
exchanged. In another aspect, the system determines the port
type according to the data exchange and, more particularly,
the sequential order in which data is generated compared to
the sequential order in which the data is later consumed.

For example, when data is consumed in a same sequential
order as generated, the port may be implemented using a
first-in-first-out (FIFO) memory. Use of a FIFO memory
means that the port is implemented as a self-synchronized
port. A data exchange where data is consumed in a different
order than generated may be implemented as a self-synchro-
nized port or as a non-self-synchronized port. When data is
consumed in a different order than generated, however, a
FIFO memory may not be used. Instead, a local memory is
used in implementing the port.

For purposes of explanation and clarity, circuit blocks,
circuitry, or circuits generated for functions are referred to
using similar terminology. For example, the circuit block
generated for a data generator generating function may be
referred to as the data generating circuit block. The circuit
block generated for the target function may be referred to as
the target circuit block. Similarly, the circuit block generated

US 9,449,131 B2

7

for the data consuming function may be referred to as the
data consuming circuit block.

In general, ports, whether self-synchronized or non-self-
synchronized, utilize block-level handshaking. A self-syn-
chronized port allows data to arrive at a data consuming
circuit block after the data consuming circuit block has
started processing. This ability requires additional hand-
shake signaling beyond block-level handshake signaling. A
data consuming circuit block may complete a block-level
start handshake and begin processing a portion of data
before, for example, a memory contains data. As additional
data is generated and placed into the memory, the data
consuming circuit block may complete the additional hand-
shake signaling to remove this data from the memory and
process the data. Similarly a data generating circuit block
may complete handshake signaling to place data in the
memory prior to completing processing. The data generating
circuit block may later complete a block level done hand-
shake.

An example of a self-synchronized port is a streaming
interface. One example of a streaming interface is an
Advanced eXtensible Interface (AXI) protocol compliant
streaming port sometimes referred to as an “AXI-stream.” In
one aspect, a streaming interface includes a FIFO memory.
In that case, the self-synchronized port adheres to a FIFO
data transfer scheme. In another aspect, a streaming inter-
face may include a local memory. In the case of a local
memory, the self-synchronized port may access data out of
order, i.e., not in FIFO order, or in accordance with a FIFO
data transfer scheme. In either case, however, the self-
synchronized port includes handshake signaling beyond that
of block-level handshake signaling such as handshake sig-
naling performed between the data consuming and/or data
generating circuit block(s) and the particular memory that is
used.

As noted, a non-self-synchronized port utilizes block-
level handshake signaling. Block-level handshake signaling
means that the data consuming and/or data generating circuit
blocks perform handshake signaling among themselves
without performing handshake signaling with the particular
memory involved in the data transfer. A data consuming
circuit block may complete a block-level start handshake
and access data in a local memory without completing
additional handshake signaling, e.g., with the memory. A
data generating circuit block may access data in the local
memory without completing handshake signaling and then
perform block-level done handshake signaling. In the case
of a non-self-synchronized port, all data that is to be
provided to a data consuming circuit block must be prepared
and available to the data consuming circuit block prior to the
start of processing of the data consuming circuit block.

A non-self-synchronized port includes a local memory
with address and data signals. The circuit structure allows
data to be read in a different order than stored. Exemplary
local memories that may be used to implement either a
self-synchronized port or a non-self-synchronized port
include, but are not limited to, a lookup table (LUT) random
access memory, a block random access memory, flip-flops,
etc. A memory external to the IC in which the electronic
system is to be implemented may also be used as a “local
memory.”

In block 240, the system automatically generates ports
within the circuit design. Each port couples a data generating
circuit block and a data consuming circuit block and is
implemented as the type determined in block 235. Accord-
ingly, each port includes the appropriate memory type.
Generating a circuit block or a port within the circuit design

10

15

20

25

30

35

40

45

50

55

60

65

8

means that the system generates an HDL module specifying
the circuit block, circuitry, or port as the case may be and
includes the HDL within the circuit design. The hardware
description modules, taken collectively, form the circuit
design for the electronic system. Accordingly, within this
disclosure, the terms “hardware description module,” “cir-
cuit,” “circuit block,” “port,” and/or “circuitry” may be used
interchangeably from time to time.

In block 245, the system automatically generates control
circuitry within the circuit design. The control circuitry may
include a start control circuit and an end control circuit. The
control circuitry, in effect, implements the control flow
construct of the algorithmic description in hardware.

Depending upon whether the port(s) connecting a data
generating function and a data consuming function with the
target function are self-synchronized, the control circuitry is
configured to generate the necessary control signals to
effectuate the flow of data among the data generating, the
target, and the data consuming circuit blocks in accordance
with the control flow construct. The extent of the control
signals is dictated, at least in part, by the type of port that is
selected or determined for implementation and the type of
detected control flow construct.

In one aspect, generating ports within the circuit design
includes automatically generating memories for data trans-
fer. For example, the system automatically inserts an
addressable memory facilitating data transfer from the data
generating circuit block to the target circuit block responsive
to determining that data is consumed in a different order than
generated. The system also may automatically insert an
addressable memory facilitating data transfer from the target
circuit block to the data consuming circuit block in like
circumstances, e.g., different data generation order than data
consumption order. In some cases, the memories may be
segmented memories, e.g., ping-pong memories, that
include multiple, independent regions that may be indepen-
dently written or read.

In another example, the system automatically inserts a
FIFO memory facilitating data transfer from the data gen-
erating circuit block to the target circuit block responsive to
determining that the target circuit block consumes data in a
same sequential order as generated by the data generating
circuit block. The system also may automatically insert a
FIFO memory facilitating data transfer from the target
circuit block to the data consuming circuit block in like
circumstances.

In block 250, the system automatically generates a circuit
block for each function of the description. In block 255, the
system outputs the resulting circuit design. The system, for
example, stores the circuit design within a memory such as
persistent storage device or the like.

FIGS. 3-1 and 3-2 are block diagrams illustrating the
automatic creation of a circuit design from a description of
an electronic system. The process illustrated in FIGS. 3-1
and 3-2 may be implemented by the system of FIG. 1.

FIG. 3-1 shows a description 305 of an electronic system
where non-self-synchronized ports are used to implement
the circuit design. Description 305 includes three functions
called function A, function B, and function C. In this
example, description 305 includes a loop type of control
flow construct. As pictured, function B is contained within
the control flow construct and is the target function. As
noted, a function contained within a control flow construct
is a function in which execution of the function, whether
conditional execution and/or the number of executions, is
directly controlled by the control flow construct.

US 9,449,131 B2

9

The system has generated a circuit design 310. Circuit
design 310 is graphically illustrated. Each of functions A, B,
and C is pictured in circuit design 310 as a block or circuit
block having a label of A, B, and C, respectively. In addition
to converting functions A, B, and C to circuit blocks, the
system has automatically inserted control circuitry 315. In
general, control circuitry 315 is a hardware implementation
of the control flow construct identified in description 305.
Control circuitry 315 includes a start control circuit 320 and
an end control circuit 325.

As discussed, the system has determined that data
exchange between function A and function B is implemented
as non-self-synchronized ports. The system has inserted
memory 330 to effectuate data transfer from circuit block A
to circuit block B. Memory 330 is a RAM. The system also
has inserted memory 335 to effectuate data transfer from
circuit block B to circuit block C. Memory 335 is a RAM.
In one aspect, any arrays specified in algorithmic description
305 are converted into two or more local memories, e.g.,
RAMs such as memories 330 and 335, accessible by par-
ticular circuit blocks. Access to each respective local
memory, e.g., memories 330 and 335, is controlled or
limited by handshake signaling performed, at least in part,
by control circuitry 315.

Within FIGS. 3-6, data signal paths are illustrated using
solid lines; and, control signals are represented by dotted or
dashed lines. For example, the solid arrows from circuit
block A to memory 330, to circuit block B, to memory 335,
and circuit block C represent the flow of data among the
noted circuit blocks. Data signal paths also exist between
circuit block A and start control circuit 320 and between start
control circuit 320 and end control circuit 325. The detection
of the control flow construct within algorithmic description
305 results in the generation of control circuitry 315 that
allows a larger number of tasks to be performed concurrently
by circuit design 310. Circuit design 310 allows circuit
blocks A, B, and C to operate simultaneously in a pipelined
manner.

Within circuit design 310, loop control may be imple-
mented as follows. In one aspect, circuit block A asserts a
done control signal to start control circuit 320 to start
iterations of loop processing including circuit block B.
Circuit block A communicates an end condition for the loop,
e.g., a loop bound, to start control circuit 320 over the data
path, which in turn communicates the end condition to end
control circuit 325 via the data path.

Start control circuit 320 may perform handshake signaling
with circuit block B responsive to each start of execution of
the loop body, i.e., circuit block B. Accordingly, start control
circuit 320 may count the starts of execution of the loop
body. Start control circuit 320 further may communicate the
count to end control circuit 325 or notify end control circuit
325 when the number of execution starts reaches the end
condition. End control circuit 325 further may perform
handshake signaling with circuit block B responsive to each
end of execution of the loop body. End control circuit 325
may count end of executions of the loop body and determine
when the count of end of executions reaches the end
condition.

End control circuit 325 performs handshake signaling
with circuit block C responsive to both the start of execution
count and the end of execution count reaching the loop
bound. For example, responsive to both start control circuit
320 and end control circuit 325 reaching the loop bound or
end condition, end control circuit 325 may assert a start
control signal to circuit block C to end or complete the loop
including circuit block B.

10

30

40

45

55

10

Regarding data flows, data generated by circuit block A,
for example, is pushed into memory 330 when space is
available. Depending upon the implementation of circuit
design 310, the handshake signaling for data flow may be
part of the control handshake signaling previously described
or implemented as separate or additional wires.

Circuit block B reads data from memory 330 during each
iteration of the loop. The data utilized by circuit block B
remains in memory 330 until the last read of the data for the
last execution of the loop is performed by circuit block B. In
one aspect, start control circuit 320 and end control circuit
325 may perform handshake signaling with circuit block B
indicating that circuit block B may remove the data no
longer needed from memory 330 subsequent to completion
of all loop body starts of execution. In other cases, the
system may enable such handshake signaling earlier if the
system determines that data stored in memory 330 is no
longer needed by circuit block B.

Handshake signaling also must be performed by end
control circuit 325 between circuit block B and circuit block
C to indicate that circuit block C may consume, or read, data
that is output by circuit block B to memory 335. The
handshake signaling performed to inform circuit block C of
the availability of data is performed responsive to comple-
tion of all executions of the loop body as described.

Memory 330 and memory 335 may be implemented using
any of a variety of known physical memory devices. For
example, memory 330 and memory 335 may be imple-
mented using lookup table (LUT) RAM, block RAM, flip-
flops, memory external to the IC in which circuit design 310
is implemented, or the like. Further, the number of storage
locations, or size, of memories 330 and 335 will vary in
accordance with requirements of description 305.

In another, alternative implementation, start control cir-
cuit 320 and end control circuit 325 may perform handshake
signaling for each iteration of the loop. The last iteration of
the loop may be indicated by a separate signal from start
control circuit 320 to end control circuit 325. Responsive to
the signal from start control circuit 320 indicating comple-
tion of the loop, end control circuit 325 may perform the
necessary handshake signaling with circuit block C.

FIG. 3-2 shows an example where self-synchronized ports
are used to implement the circuit design. In the example
shown in FIG. 3-2, self-synchronized port 350 is imple-
mented to pass data from circuit block A to circuit block B.
Self-synchronized port 355 is implemented to pass data from
circuit block B to circuit block C. In one aspect, self-
synchronized port 350 and self-synchronized port 355 are
implemented using FIFO memories. In another aspect, self-
synchronized port 350 and self-synchronized port 355 are
implemented using a local memory. In another aspect, one of
self-synchronized ports 350 or 355 may be implemented
using a FIFO memory while the other one of self-synchro-
nized ports 350 or 355 is implemented using a local memory.

FIGS. 4-1 and 4-2 are block diagrams illustrating the
automatic creation of another circuit design from a descrip-
tion of an electronic system. The process illustrated in FIGS.
4-1 and 4-2 may be implemented by the system of FIG. 1.

FIG. 4-1 shows description 305 of an electronic system
where non-self-synchronized ports are used to implement
the circuit design. FIG. 4 illustrates an alternative imple-
mentation where description 305 is converted into circuit
design 410. Circuit design 410 is substantially similar to
circuit design 310 of FIG. 3-1, with the exception that
function B is implemented as a plurality of circuit blocks B1,
B2, and B3 to facilitate additional pipelining. Accordingly,
start control circuit 420 performs handshake signaling with

US 9,449,131 B2

11

circuit block B1. End control circuit 425 performs hand-
shake signaling with circuit block B3. Handshake signaling
also is implemented between circuit blocks B1 and B2 and
between circuit blocks B2 and B3.

FIG. 4-2 shows an example where self-synchronized ports
are used to implement the circuit design. In the example
shown in FIG. 4-2, self-synchronized port 450 is imple-
mented to pass data from circuit block A to circuit block B1.
Self-synchronized port 455 is implemented to pass data from
circuit block B3 to circuit block C. In one aspect, self-
synchronized port 450 and self-synchronized port 455 are
implemented using FIFO memories. In another aspect, self-
synchronized port 450 and self-synchronized port 455 are
implemented using local memories. In another aspect, one of
self-synchronized ports 450 or 455 may be implemented
using a FIFO memory while the other one of self-synchro-
nized ports 450 or 455 is implemented using local memories.

FIG. 5 is a block diagram illustrating the automatic
creation of another circuit design from a description of an
electronic system. The process illustrated in FIG. 5 may be
implemented by the system of FIG. 1. FIG. 5 shows a
description 505 of an electronic system. Description 505
includes four functions called function A, function B1,
function B2, and function C. In this example, algorithmic
description 505 includes an “If-then-else” type of control
flow construct. As pictured, both functions B1 and B2 are
contained within the control flow construct as mutually
exclusive execution options.

The system has generated a circuit design 510. Circuit
design 510 is graphically illustrated. Each of functions A,
B1, B2, and C is pictured in circuit design 510 as a circuit
or circuit block labelled A, B1, B2, and C, respectively. The
system automatically inserts control circuitry 515. Control
circuitry 515 is a hardware implementation of the “if-then-
else” control flow construct identified in description 505.
Control circuitry 515 includes a start control circuit 520 and
an end control circuit 525.

In the example of FIG. 5, the system generates non-self-
synchronized ports. The system further has inserted memory
530 to effectuate data transfer from circuit block A to either
circuit block B1 or B2. The system also has inserted memory
535 to effectuate data transfer from either circuit block B1
or B2 to circuit block C. Access to each respective local
memory, e.g., memories 530 and 535, is controlled or
limited by handshake signaling performed by control cir-
cuitry 515. Memories 530 and 535 are RAM type memories.

For example, start control circuitry 520 may receive a
done signal from circuit block A. Responsive to the done
control signal, start control circuitry 520 may assert, or
output, a start control signal to either circuit block B1 or
circuit block B2 according to a condition of the control flow
construct passed from circuit block A to start control circuit
520. End control circuit 525 may receive a done control
signal from either circuit block B1 or B2, as the case may be,
and in response thereto, assert or output a start control signal
to circuit block C.

FIG. 6 is a block diagram illustrating the automatic
creation of another circuit design from a description of an
electronic system. The process illustrated in FIG. 6 may be
implemented by the system of FIG. 1. FIG. 6 presents a more
detailed illustration where the system generates circuit
design 610 from description 605 and uses non-self-synchro-
nized ports.

Within circuit design 610, the system determines that each
of the inputs and outputs of the functions are implemented
as memories. As shown, circuit design 610 includes an
output A memory for outputA, an output B1 memory for

10

15

20

25

30

35

40

45

50

55

60

65

12

outputB1, and an output B2 memory for outputB2. The
memories providing data to circuit block A and receiving
data from circuit block C are not shown for ease of illus-
tration.

In the example of FIG. 6, each of output A memory, output
B1 memory, and output B2 memory may be implemented as
aping-pong memory or memory having at least two separate
storage regions to facilitate parallel or concurrent execution
of circuit blocks for different data sets. For example, when
circuit block A completes operations, the results may be
stored in a first storage region of output A memory. Since
function B receives “outputA” as input, circuit block A
asserts a done control signal to start control circuit 620. The
done control signal from circuit block A initiates execution
of'the loop including circuit blocks B1 and B2. Circuit block
A may begin operating upon a next data set with results
being stored in a second region of output A memory. Thus,
circuit block B1 may continue to access the first region of
output A memory while circuit block A writes to the second
region of output A memory.

Start control circuit 620 begins loop execution by assert-
ing a control signal to circuit block B1. Start control circuit
620 may continue starting new loop iterations until the loop
exit condition is determined to be true. When circuit block
B1 completes operations, the resulting data is stored in a first
region of output B1 memory. Circuit block B1 further asserts
a start signal control signal to circuit block B2. Circuit block
B2 begins operation on the data stored in the first region of
output B1 memory. Meanwhile, circuit block B1 may begin
computations for a next iteration. If this is the last iteration
of the loop, the start control logic may initiate a new loop
start and block B1 can begin computation by retrieving a
next data set from the second region of output A memory.
Data generated by circuit block B1 is stored in the second
region of output B1 memory.

When circuit block B1 and circuit block B2 finish all
iterations for the loop, end control circuit 625 asserts a start
control signal to circuit block C. Responsive to the start
control signal from end control circuit 625, circuit block C
obtains data for processing from output B2 memory.

FIG. 7 illustrates an exemplary description 705 of an
electronic system that uses self-synchronized ports. The data
exchanged between functions A, B1, B2, and C, as declared
within description 705, are communicated by stream data
types. The system evaluates description 705 and determines,
from the description itself and the use of stream data types,
that self-synchronized ports may be used in the circuit
design.

FIG. 8 illustrates another exemplary description 805 of an
electronic system that uses self-synchronized ports. In the
case of description 805, the system analyzes the producer
function and finds that the data is generated in sequential
order from index of 0 to N-1. The system further analyzes
the consumer function and determines that data generated by
the producer function is consumed in the same order as
generated by the producer function. The system uses a FIFO
memory since the system is able to prove, or determine, that
the data generation order and the consumption order are
same. In one aspect, when the system is unable to determine
or prove that data is consumed in a same sequential order as
generated, the system evaluates that condition to be the
equivalent of a determination that data is not consumed in
the same sequential order as generated.

FIG. 9 is a block diagram illustrating an exemplary
architecture 900 for an IC in accordance with an embodi-
ment disclosed within this specification. Architecture 900
can be implemented within a field programmable gate array

US 9,449,131 B2

13

(FPGA) type of IC, for example. The various circuit designs
described within this specification may be further processed,
e.g., converted into a configuration bitstream, and loaded
into an IC using architecture 900.

As shown, architecture 900 includes several different
types of programmable circuit, e.g., logic, blocks. For
example, architecture 900 can include a large number of
different programmable tiles including multi-gigabit trans-
ceivers (MGTs) 901, configurable logic blocks (CLBs) 902,
random access memory blocks (BRAMs) 903, input/output
blocks (IOBs) 904, configuration and clocking logic (CON-
FIG/CLOCKS) 905, digital signal processing blocks (DSPs)
906, specialized I/O blocks 907 (e.g., configuration ports
and clock ports), and other programmable logic 908 such as
digital clock managers, analog-to-digital converters, system
monitoring logic, and so forth.

In some ICs, each programmable tile includes a program-
mable interconnect element (INT) 911 having standardized
connections to and from a corresponding INT 911 in each
adjacent tile. Therefore, the INTs 911, taken together, imple-
ment the programmable interconnect structure for the illus-
trated IC. Each INT 911 also includes the connections to and
from the programmable logic element within the same tile,
as shown by the examples included at the top of FIG. 9.

For example, a CLLB 902 can include a configurable logic
element (CLE) 912 that can be programmed to implement
user logic plus a single INT 911. A BRAM 903 can include
a BRAM logic element (BRL) 913 in addition to one or
more INTs 911. Typically, the number of INTs 911 included
in a tile depends on the height of the tile. In the pictured
embodiment, a BRAM tile has the same height as five CLBs,
but other numbers (e.g., four) can also be used. A DSP tile
906 can include a DSP logic element (DSPL) 914 in addition
to an appropriate number of INTs 911. An 10B 904 can
include, for example, two instances of an /O logic element
(IOL) 915 in addition to one instance of an INT 911. As will
be clear to those of skill in the art, the actual 1/O pads
connected, for example, to IOL 915 typically are not con-
fined to the area of IOL 915.

In the example pictured in FIG. 9, a columnar area near
the center of the die, e.g., formed of regions 905, 907, and
908, can be used for configuration, clock, and other control
logic. Horizontal areas 909 extending from this column are
used to distribute the clocks and configuration signals across
the breadth of the programmable IC.

Some ICs utilizing the architecture illustrated in FIG. 9
include additional logic blocks that disrupt the regular
columnar structure making up a large part of the IC. The
additional logic blocks can be programmable blocks and/or
dedicated circuitry. For example, a processor block depicted
as PROC 910 spans several columns of CLBs and BRAMs.

In one aspect, PROC 910 is implemented as a dedicated
circuitry, e.g., as a hard-wired processor, that is fabricated as
part of the die that implements the programmable circuitry
of the IC. PROC 910 can represent any of a variety of
different processor types and/or systems ranging in com-
plexity from an individual processor, e.g., a single core
capable of executing program code, to an entire processor
system having one or more cores, modules, co-processors,
interfaces, or the like.

In another aspect, PROC 910 is omitted from architecture
900 and replaced with one or more of the other varieties of
the programmable blocks described. Further, such blocks
can be utilized to form a “soft processor” in that the various
blocks of programmable circuitry can be used to form a
processor that can execute program code as is the case with
PROC 910.

40

45

55

60

14

The phrase “programmable circuitry” can refer to pro-
grammable circuit elements within an IC, e.g., the various
programmable or configurable circuit blocks or tiles
described herein, as well as the interconnect circuitry that
selectively couples the various circuit blocks, tiles, and/or
elements according to configuration data that is loaded into
the IC. For example, portions shown in FIG. 9 that are
external to PROC 910 such as CLBs 902 and BRAMs 903
can be considered programmable circuitry of the IC.

In general, the functionality of programmable circuitry is
not established until configuration data is loaded into the IC.
A set of configuration bits can be used to program program-
mable circuitry of an IC such as an FPGA. The configuration
bit(s) typically are referred to as a “configuration bitstream.”
In general, programmable circuitry is not operational or
functional without first loading a configuration bitstream
into the IC. The configuration bitstream effectively imple-
ments or instantiates a particular circuit design within the
programmable circuitry. The circuit design specifies, for
example, functional aspects of the programmable circuit
blocks and physical connectivity among the various pro-
grammable circuit blocks.

Circuitry that is “hardwired” or “hardened,” i.e., not
programmable, is manufactured as part of the IC. Unlike
programmable circuitry, hardwired circuitry or circuit
blocks are not implemented after the manufacture of the IC
through the loading of a configuration bitstream. Hardwired
circuitry is generally considered to have dedicated circuit
blocks and interconnects, for example, that are functional
without first loading a configuration bitstream into the IC,
e.g., PROC 910.

In some instances, hardwired circuitry can have one or
more operational modes that can be set or selected according
to register settings or values stored in one or more memory
elements within the IC. The operational modes can be set,
for example, through the loading of a configuration bit-
stream into the IC. Despite this ability, hardwired circuitry
is not considered programmable circuitry as the hardwired
circuitry is operable and has a particular function when
manufactured as part of the IC.

FIG. 9 is intended to illustrate an exemplary architecture
that can be used to implement an IC that includes program-
mable circuitry, e.g., a programmable fabric. For example,
the number of logic blocks in a column, the relative width
of the columns, the number and order of columns, the types
of'logic blocks included in the columns, the relative sizes of
the logic blocks, and the interconnect/logic implementations
included at the top of FIG. 9 are purely exemplary. In an
actual IC, for example, more than one adjacent column of
CLBs is typically included wherever the CLBs appear, to
facilitate the efficient implementation of a user circuit
design. The number of adjacent CLB columns, however, can
vary with the overall size of the IC. Further, the size and/or
positioning of blocks such as PROC 910 within the IC are
for purposes of illustration only and are not intended as a
limitation of the one or more embodiments disclosed within
this specification.

In accordance with the inventive arrangements disclosed
herein, a description of an electronic system may be evalu-
ated to identify control flow constructs. In generating a
circuit design from the description, control circuitry is
inserted into the circuit design that implements functionality
of the control flow construct. The control circuitry performs
function such as handshake signaling to increase parallel-
ism, efficiently use resources, and increase of the resulting
circuit design.

US 9,449,131 B2

15

For purposes of explanation, specific nomenclature is set
forth to provide a thorough understanding of the various
inventive concepts disclosed herein. The terminology used
herein, however, is for the purpose of describing particular
aspects of the inventive arrangements only and is not
intended to be limiting.

The terms “a” and “an,” as used herein, are defined as one
or more than one. The term “plurality,” as used herein, is
defined as two or more than two. The term “another,” as used
herein, is defined as at least a second or more. The term
“coupled,” as used herein, is defined as connected, whether
directly without any intervening elements or indirectly with
one or more intervening elements, unless otherwise indi-
cated. Two elements also can be coupled mechanically,
electrically, or communicatively linked through a commu-
nication channel, pathway, network, or system.

The term “and/or” as used herein refers to and encom-
passes any and all possible combinations of one or more of
the associated listed items. It will be further understood that
the terms “includes” and/or “including,” when used in this
disclosure, specify the presence of stated features, integers,
steps, operations, elements, and/or components, but do not
preclude the presence or addition of one or more other
features, integers, steps, operations, elements, components,
and/or groups thereof. It will also be understood that,
although the terms first, second, etc. may be used herein to
describe various elements, these elements should not be
limited by these terms, as these terms are only used to
distinguish one element from another.

The term “if” may be construed to mean “when” or
“upon” or “in response to determining” or “in response to
detecting,” depending on the context. Similarly, the phrase
“if it is determined” or “if [a stated condition or event] is
detected” may be construed to mean “upon determining” or
“in response to determining” or “upon detecting [the stated
condition or event]” or “in response to detecting [the stated
condition or event],” depending on the context.

Within this disclosure, the same reference characters are
used to refer to terminals, signal lines, wires, and their
corresponding signals. In this regard, the terms “signal,”
“wire,” “connection,” “terminal,” and “pin” may be used
interchangeably, from time-to-time, within this disclosure. It
also should be appreciated that the terms “signal,” “wire,” or
the like can represent one or more signals, e.g., the convey-
ance of a single bit through a single wire or the conveyance
of multiple parallel bits through multiple parallel wires.
Further, each wire or signal may represent bi-directional
communication between two, or more, components con-
nected by a signal or wire as the case may be.

One or more aspects described within this disclosure can
be realized in hardware or a combination of hardware and
software. One or more aspects can be realized in a central-
ized fashion in one system or in a distributed fashion where
different elements are spread across several interconnected
systems. Any kind of data processing system or other
apparatus adapted for carrying out at least a portion of the
methods described herein is suited.

One or more aspects further can be embedded in a
computer program product, which includes all the features
enabling the implementation of the methods described
herein. The computer program product includes a computer-
readable data storage medium. As defined herein, the term
“computer readable storage medium” means a storage
medium that contains or stores program code for use by or
in connection with an instruction execution system, appa-
ratus, or device. A computer readable storage medium is
non-transitory and, as such, is not a transitory propagating

2 <

10

15

20

25

30

35

40

45

50

55

60

65

16

signal per se. Examples of a computer-readable storage
medium may include, but are not limited to, optical media,
magnetic media, magneto-optical media, computer memory
such as random access memory, a bulk storage device, e.g.,
hard disk, or the like.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer pro-
gram products according to various aspects of the inventive
arrangements disclosed herein. In this regard, each block in
the flowchart or block diagrams may represent a module,
segment, or portion of code, which includes one or more
executable instructions for implementing the specified logi-
cal function(s). It should also be noted that, in some alter-
native implementations, the functions noted in the blocks
may occur out of the order noted in the figures. For example,
two blocks shown in succession may be executed substan-
tially concurrently, or the blocks may sometimes be
executed in the reverse order, depending upon the function-
ality involved. It will also be noted that each block of the
block diagrams and/or flowchart illustration, and combina-
tions of blocks in the block diagrams and/or flowchart
illustration, can be implemented by special purpose hard-
ware-based systems that perform the specified functions or
acts, or combinations of special purpose hardware and
computer instructions.

Thus, throughout this disclosure, statements utilizing
terms such as “processing” or “computing” or “calculating”
or “determining” or “displaying” or the like, refer to the
action and processes of a data processing system, e.g., a
computer system, or similar electronic computing device,
that manipulates and transforms data represented as physical
(electronic) quantities within the computer system’s regis-
ters and/or memories into other data similarly represented as
physical quantities within the computer system memories
and/or registers or other such information storage, transmis-
sion or display devices.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the
claims below are intended to include any structure, material,
or act for performing the function in combination with other
claimed elements as specifically claimed.

A method includes determining a first function of a high
level programming language description and a second func-
tion contained within a control flow construct of the high
level programming description, determining that the second
function is a data consuming function of the first function,
and automatically generating, within a circuit design and
using a processor, a port including a local memory. The port
couples a first circuit block implementation of the first
function to a second circuit block implementation of the
second function within the circuit design.

The method may include automatically generating, within
the circuit design, control circuitry controlling operation of
the second circuit block by performing handshake signaling
between the first circuit block and the second circuit block
as a non-self-synchronized port.

In one aspect, automatically generating control circuitry
may include generating a start control circuit and an end
control circuit implementing the flow control construct.

In another aspect, automatically generating control cir-
cuitry may include generating a start control circuit that,
responsive to receiving a done control signal from the first
circuit block, outputs a start control signal to the second
circuit block or a third circuit block according to a condition
of the control flow construct. An end control circuit may be
generated that provides a start control signal to a fourth

US 9,449,131 B2

17

circuit block responsive receiving a done control signal from
either the second circuit block or the third circuit block. The
fourth circuit block is generated from a function that is a data
consuming function of the second function or the third
function.

In another aspect, automatically generating control cir-
cuitry may include generating a start control circuit that,
responsive to receiving a done control signal from the first
circuit block, outputs a start control signal to the second
circuit block according to a condition of the control flow
construct. An end control circuit may be generated that
provides a start control signal to a third circuit block
responsive to receiving a done control signal from the
second circuit block. The third circuit block is generated
from a third function that is a data consuming function of the
second function.

In still another aspect, automatically generating control
circuitry may include generating a start control circuit that,
responsive to receiving a done control signal from the first
circuit block, outputs a start control signal to the second
circuit block. An end control circuit may be generated that
provides a start control signal to a third circuit block
responsive to determining that an end condition of the
control flow construct is met. The third circuit block is
generated from a third function that is a data consuming
function of the second function.

The start control circuit may communicate the end con-
dition of the flow control construct to the end control circuit.
Further, the end control circuit may provide the start control
signal to the third circuit block responsive to both the start
control circuit and the end control circuit detecting the end
condition.

A system includes a processor programmed to initiate
executable operations. The executable operations include
determining a first function of a high level programming
language description and a second function contained within
a control flow construct of the high level programming
description, determining that the second function is a data
consuming function of the first function, and automatically
generating, within a circuit design, a port including a local
memory. The port couples a first circuit block implementa-
tion of the first function to a second circuit block imple-
mentation of the second function within the circuit design.

The executable operations may include automatically
generating, within the circuit design, control circuitry con-
trolling operation of the second circuit block by performing
handshake signaling between the first circuit block and the
second circuit block as a non-self-synchronized port.

In one aspect, automatically generating control circuitry
may include generating a start control circuit and an end
control circuit implementing the flow control construct.

In another aspect, automatically generating control cir-
cuitry may include generating a start control circuit that,
responsive to receiving a done control signal from the first
circuit block, outputs a start control signal to the second
circuit block or a third circuit block according to a condition
of the control flow construct. An end control circuit may be
generated that provides a start control signal to a fourth
circuit block responsive receiving a done control signal from
either the second circuit block or the third circuit block. The
fourth circuit block is generated from a function that is a data
consuming function of the second function or the third
function.

In another aspect, automatically generating control cir-
cuitry includes generating a start control circuit that, respon-
sive to receiving a done control signal from the first circuit
block, outputs a start control signal to the second circuit

10

15

20

25

30

35

40

45

55

60

65

18

block according to a condition of the control flow construct.
An end control circuit may be generated that provides a start
control signal to a third circuit block responsive to receiving
a done control signal from the second circuit block. The third
circuit block is generated from a third function that is a data
consuming function of the second function.

In still another aspect, automatically generating control
circuitry may include generating a start control circuit that,
responsive to receiving a done control signal from the first
circuit block, outputs a start control signal to the second
circuit block. An end control circuit may be generated that
provides a start control signal to a third circuit block
responsive to determining that an end condition of the
control flow construct is met. The third circuit block is
generated from a third function that is a data consuming
function of the second function.

The start control circuit may communicate the end con-
dition of the flow control construct to the end control circuit.
Further, the end control circuit may provide the start control
signal to the third circuit block responsive to both the start
control circuit and the end control circuit detecting the end
condition.

A non-transitory computer-readable storage medium
includes instructions stored thereon. The instructions, when
executed by a processor, perform a method. The method
includes determining a first function of a high level pro-
gramming language description and a second function con-
tained within a control flow construct of the high level
programming description, determining that the second func-
tion is a data consuming function of the first function, and
automatically generating, within a circuit design, a port
including a local memory. The port couples a first circuit
block implementation of the first function to a second circuit
block implementation of the second function within the
circuit design.

The method may include automatically generating, within
the circuit design, control circuitry controlling operation of
the second circuit block by performing handshake signaling
between the first circuit block and the second circuit block
as a non-self-synchronized port.

In one aspect, automatically generating control circuitry
may include generating a start control circuit and an end
control circuit implementing the flow control construct.

The start control circuit may communicate the end con-
dition of the flow control construct to the end control circuit.

The features described within this disclosure can be
embodied in other forms without departing from the spirit or
essential attributes thereof. Accordingly, reference should be
made to the following claims, rather than to the foregoing
disclosure, as indicating the scope of such features and
implementations.

What is claimed is:

1. A method, comprising:

determining a first function of a high level programming

language description and a second function contained
within a control flow construct of the high level pro-
gramming description;

determining that the second function is a data consuming

function of the first function;

automatically generating, within a circuit design and

using a processor, a port comprising a local memory,
wherein the port couples a first circuit block imple-
mentation of the first function to a second circuit block
implementation of the second function within the cir-
cuit design; and

automatically generating, within the circuit design, con-

trol circuitry controlling operation of the second circuit

US 9,449,131 B2

19

block by performing handshake signaling between the
first circuit block and the second circuit block as a
non-self-synchronized port.

2. The method of claim 1, wherein automatically gener-
ating control circuitry comprises:

generating a start control circuit and an end control circuit

implementing the flow control construct.

3. The method of claim 1, wherein automatically gener-
ating control circuitry comprises:

generating a start control circuit that, responsive to receiv-

ing a done control signal from the first circuit block,
outputs a start control signal to the second circuit block
or a third circuit block according to a condition of the
control flow construct; and

generating an end control circuit that provides a start

control signal to a fourth circuit block responsive
receiving a done control signal from either the second
circuit block or the third circuit block;

wherein the fourth circuit block is generated from a

function that is a data consuming function of the second
function or the third function.

4. The method of claim 1, wherein automatically gener-
ating control circuitry comprises:

generating a start control circuit that, responsive to receiv-

ing a done control signal from the first circuit block,
outputs a start control signal to the second circuit block
according to a condition of the control flow construct;
and

generating an end control circuit that provides a start

control signal to a third circuit block responsive to
receiving a done control signal from the second circuit
block;

wherein the third circuit block is generated from a third

function that is a data consuming function of the second
function.

5. The method of claim 1, wherein automatically gener-
ating control circuitry comprises:

generating a start control circuit that, responsive to receiv-

ing a done control signal from the first circuit block,
outputs a start control signal to the second circuit block;
and

generating an end control circuit that provides a start

control signal to a third circuit block responsive to
determining that an end condition of the control flow
construct is met;

wherein the third circuit block is generated from a third

function that is a data consuming function of the second
function.

6. The method of claim 5, wherein the start control circuit
communicates the end condition of the flow control con-
struct to the end control circuit.

7. The method of claim 6, wherein the end control circuit
provides the start control signal to the third circuit block
responsive to both the start control circuit and the end
control circuit detecting the end condition.

8. A system, comprising:

a processor programmed to initiate executable operations

comprising:

determining a first function of a high level programming

language description and a second function contained
within a control flow construct of the high level pro-
gramming description;

determining that the second function is a data consuming

function of the first function;

automatically generating, within a circuit design, a port

comprising a local memory;

10

20

25

30

35

40

45

50

55

60

65

20

wherein the port couples a first circuit block implemen-
tation of the first function to a second circuit block
implementation of the second function within the cir-
cuit design; and

wherein the processor further initiates executable opera-

tions comprising:

automatically generating, within the circuit design,
control circuitry controlling operation of the second
circuit block by performing handshake signaling
between the first circuit block and the second circuit
block as a non-self-synchronized port.

9. The system of claim 8, wherein automatically gener-
ating control circuitry comprises:

generating a start control circuit and an end control circuit

implementing the flow control construct.

10. The system of claim 8, wherein automatically gener-
ating control circuitry comprises:

generating a start control circuit that, responsive to receiv-

ing a done control signal from the first circuit block,
outputs a start control signal to the second circuit block
or a third circuit block according to a condition of the
control flow construct; and

generating an end control circuit that provides a start

control signal to a fourth circuit block responsive
receiving a done control signal from either the second
circuit block or the third circuit block;

wherein the fourth circuit block is generated from a

function that is a data consuming function of the second
function or the third function.

11. The system of claim 8, wherein automatically gener-
ating control circuitry comprises:

generating a start control circuit that, responsive to receiv-

ing a done control signal from the first circuit block,
outputs a start control signal to the second circuit block
according to a condition of the control flow construct;
and

generating an end control circuit that provides a start

control signal to a third circuit block responsive to
receiving a done control signal from the second circuit
block;

wherein the third circuit block is generated from a third

function that is a data consuming function of the second
function.

12. The system of claim 8, wherein automatically gener-
ating control circuitry comprises:

generating a start control circuit that, responsive to receiv-

ing a done control signal from the first circuit block,
outputs a start control signal to the second circuit block;
and

generating an end control circuit that provides a start

control signal to a third circuit block responsive to
determining that an end condition of the control flow
construct is met;

wherein the third circuit block is generated from a third

function that is a data consuming function of the second
function.

13. The system of claim 12, wherein the start control
circuit communicates the end condition of the flow control
construct to the end control circuit.

14. The system of claim 13, wherein the end control
circuit provides the start control signal to the third circuit
block responsive to both the start control circuit and the end
control circuit detecting the end condition.

15. A non-transitory computer-readable storage medium
having instructions stored thereon which, when executed by
a processor, perform a method comprising:

US 9,449,131 B2
21

determining a first function of a high level programming
language description and a second function contained
within a control flow construct of the high level pro-
gramming description;

determining that the second function is a data consuming 5

function of the first function;

automatically generating, within a circuit design, a port

comprising a local memory;

wherein the port couples a first circuit block implemen-

tation of the first function to a second circuit block 10
implementation of the second function within the cir-
cuit design; and

automatically generating, within the circuit design, con-

trol circuitry controlling operation of the second circuit
block by performing handshake signaling between the 15
first circuit block and the second circuit block as a
non-self-synchronized port.

16. The non-transitory computer-readable storage
medium of claim 15, wherein automatically generating
control circuitry comprises: 20

generating a start control circuit and an end control circuit

implementing the flow control construct.

17. The non-transitory computer-readable storage
medium of claim 16, wherein the start control circuit com-
municates the end condition of the flow control construct to 25
the end control circuit.

#* #* #* #* #*

